Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Heliyon ; 10(7): e28952, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596098

RESUMO

Amino acid variants in protein may result in deleterious effects on enzymatic activity. In this study we investigate the DNA variants on activity of CYP2B6 gene in a Chinese Han population for potential use in precision medicine. All exons in CYP2B6 gene from 1483 Chinese Han adults (Zhejiang province) were sequenced using Sanger sequencing. The effects of nonsynonymous variants on recombinant protein catalytic activity were investigated in vitro with Sf12 system. The haplotype of novel nonsynonymous variants with other single nucleotide variants in the same allele was determined using Nanopore sequencing. Of 38 alleles listed on the Pharmacogene Variation Consortium, we detected 7 previously reported alleles and 18 novel variants, of which 11 nonsynonymous variants showed lower catalytic activity (0.00-0.60) on bupropion compared to CYP2B6*1. Further, these 11 novel star-alleles (CYP2B6*39-49) were assigned by the Pharmacogene Variation Consortium, which may be valuable for pharmacogenetic research and personalized medicine.

3.
ACS Nano ; 18(4): 3509-3519, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38241636

RESUMO

Intrauterine adhesions (IUA) refer to adhesions within the uterine cavity and cervix caused by injuries from uterine surgery. They are a significant cause of female infertility. Exosomes derived from mesenchymal stem cells (MSCs) play an active role in the treatment of IUA. However, the mechanism by which they reduce fibrosis in the damaged endometrium remains unclear. In this paper, we demonstrate that exosomes derived from placental mesenchymal stem cells (PMSCs) can restore uterine functions and improve the fertility rate of injured animals. This is achieved by promoting cell proliferation, increasing endometrial thickness, and reversing fibrosis. Regarding the molecular mechanism behind these therapeutic effects, we identify three specific miRNAs, namely, miR-125b-5p, miR-30c-5p, and miR-23a-3p, enriched in PMSC-exosomes, as the key players in the treatment of IUA. Specifically, miR-125b-5p/miR-30c-5p and miR-23a-3p inhibit the expression of smad2 and smad3 by targeting their 3'-untranslated regions, resulting in the downregulation of the transforming growth factor-ß (TGF-ß)/smad signaling pathway and the reversal of fibrosis. Notably, the safety of PMSC-exosomes in intrauterine treatment was also been confirmed. In conclusion, we illustrate that exosomes derived from PMSCs possess the capability to repair endometrial damage and enhance fertility in injured animals by regulating the TGF-ß/smad pathway via miR-125b-5p, miR-30c-5p, and miR-23a-3p. This provides insights into the precision treatment of IUA through exosome-based cell-free therapy.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Animais , Feminino , Gravidez , Fator de Crescimento Transformador beta/metabolismo , Exossomos/metabolismo , Placenta/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais , Fibrose , Fatores de Crescimento Transformadores/metabolismo
4.
Pharmacol Res ; 199: 106990, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984506

RESUMO

Resistance to temozolomide (TMZ), the frontline chemotherapeutic agent for glioblastoma (GBM), has emerged as a formidable obstacle, underscoring the imperative to identify alternative therapeutic strategies to improve patient outcomes. In this study, we comprehensively evaluated a novel agent, O6-methyl-2'-deoxyguanosine-5'-triphosphate (O6-methyl-dGTP) for its anti-GBM activity both in vitro and in vivo. Notably, O6-methyl-dGTP exhibited pronounced cytotoxicity against GBM cells, including those resistant to TMZ and overexpressing O6-methylguanine-DNA methyltransferase (MGMT). Mechanistic investigations revealed that O6-methyl-dGTP could be incorporated into genomic DNA, disrupting nucleotide pools balance, and inducing replication stress, resulting in S-phase arrest and DNA damage. The compound exerted its anti-tumor properties through the activation of AIF-mediated apoptosis and the parthanatos pathway. In vivo studies using U251 and Ln229 cell xenografts supported the robust tumor-inhibitory capacity of O6-methyl-dGTP. In an orthotopic transplantation model with U87MG cells, O6-methyl-dGTP showcased marginally superior tumor-suppressive activity compared to TMZ. In summary, our research, for the first time, underscores the potential of O6-methyl-dGTP as an effective candidate against GBM, laying a robust scientific groundwork for its potential clinical adoption in GBM treatment regimens.


Assuntos
Glioblastoma , Polifosfatos , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Nucleosídeos/farmacologia , Nucleosídeos/uso terapêutico , Caspases , Linhagem Celular Tumoral , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Nucleotídeos , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/farmacologia , O(6)-Metilguanina-DNA Metiltransferase/uso terapêutico , Desoxiguanosina/farmacologia , Desoxiguanosina/uso terapêutico , DNA , Resistencia a Medicamentos Antineoplásicos
5.
Diabetes Metab Syndr ; 17(12): 102907, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37980723

RESUMO

AIMS: Glucagon-like peptide 1 (GLP-1) is produced by the L subtype of enteroendocrine cells (EECs). Patients with type 2 diabetes (T2D) exhibit reduced incretin effect, but the pathophysiology and functional change of the L-cells remain unclear. Deciphering the mechanisms of the biological changes in L-cells under T2D conditions may assist in the research of gut-based strategies for T2D therapy. METHODS: We investigated the fasting serum GLP-1 levels and the distribution of colonic L-cells in young and aged participants with and without T2D. Additionally, we established an aged male T2D Wistar rat model subjected to a long-term high-fat and high-fructose (HFHF) diet. Histological investigations and single-cell RNA sequencing (scRNA-seq) analyses were performed to explore the mechanisms underlying functional changes in the colonic EECs. RESULTS: We observed a decline in circulating GLP-1 levels and a reduced number of colonic L-cells in elderly patients with T2D. The mechanisms underlying impaired L-cell formation and disturbed GLP-1 production were revealed using aged T2D rats induced by a long-term HFHF diet. The scRNA-seq results showed that the transcription factors that regulate L-cell commitment, such as Foxa1, were downregulated, and the expression of genes that participate in encoding GLP-1, GLP-1 posttranslational processing, hormone secretion, and nutrient sensing was disturbed. CONCLUSIONS: Taken together, the reduced L-cell lineage commitment and disturbed L-cell functions might be the major cause of the reduced GLP-1 production in aged populations with T2D. Our study provides new insights for identifying novel targets in colonic L-cells for improving endogenous GLP-1 production.


Assuntos
Diabetes Mellitus Tipo 2 , Peptídeo 1 Semelhante ao Glucagon , Humanos , Camundongos , Idoso , Masculino , Ratos , Animais , Células L , Ratos Wistar , Células Enteroendócrinas/metabolismo , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fator 3-alfa Nuclear de Hepatócito/farmacologia
6.
Biomed Pharmacother ; 168: 115833, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37935069

RESUMO

The aim of this study was to investigate the impacts of 24 variants of recombinant human CYP3A4 and drug interactions on the metabolism of lurasidone. In vitro, enzymatic reaction incubation system of CYP3A4 was established to determine the kinetic parameters of lurasidone catalyzed by 24 CYP3A4 variants. Then, we constructed rat liver microsomes (RLM) and human liver microsomes (HLM) incubation system to screen potential anti-tumor drugs that could interact with lurasidone and studied its inhibitory mechanism. In vivo, Sprague-Dawley (SD) rats were applied to study the interaction between lurasidone and olmutinib. The concentrations of the analytes were detected by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). As the results, we found that compared with the wild-type CYP3A4, the relative intrinsic clearances vary from 355.77 % in CYP3A4.15 to 14.11 % in CYP3A4.12. A series of drugs were screened based on the incubation system, and compared to without olmutinib, the amount of ID-14283 (the metabolite of lurasidone) in RLM and HLM were reduced to 7.22 % and 7.59 %, and its IC50 were 18.83 ± 1.06 µM and 16.15 ± 0.81 µM, respectively. At the same time, it exerted inhibitory effects both through a mixed mechanism. When co-administration of lurasidone with olmutinib in rats, the AUC(0-t) and AUC(0-∞) of lurasidone were significantly increased by 73.52 % and 69.68 %, respectively, while CLz/F was observably decreased by 43.83 %. In conclusion, CYP3A4 genetic polymorphism and olmutinib can remarkably affect the metabolism of lurasidone.


Assuntos
Citocromo P-450 CYP3A , Cloridrato de Lurasidona , Animais , Humanos , Ratos , Cromatografia Líquida , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Cloridrato de Lurasidona/farmacocinética , Microssomos Hepáticos , Polimorfismo Genético , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
7.
Food Chem Toxicol ; 181: 114101, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37863381

RESUMO

Itraconazole is a triazole anti-infective drug that has been proven to prevent and treat a variety of fungal and viral infections and has been considered to be a potential therapeutic remedy for COVID-19 treatment. In this study, we aimed to completely evaluate the impacts of Cytochrome P450 3A4 (CYP3A4) variant proteins and drug interactions on the metabolism of itraconazole in recombinant insect microsomes, and to characterize the potential mechanism of substrate selectivity. Incubations with itraconazole (0.2-15 µM) in the presence/absence of lopinavir or darunavir were assessed by CYP3A4 variants, and the metabolite hydroxyitraconazole concentrations were measured by UPLC-MS/MS. Our data showed that when compared with CYP3A4.1, 4 variants (CYP3A4.9, .10, .28 and .34) displayed no significant differences, and 3 variants (CYP3A4.14, .15 and .19) exhibited increased intrinsic clearance (CLint), whereas the remaining 17 variant proteins showed decreased enzyme activities for the catalysis of itraconazole. Moreover, the inhibitory effects of lopinavir and darunavir on itraconazole metabolism varied in different degrees. Furthermore, different changed trend of the kinetic parameters in ten variants (CYP3A4.5, .9, .10, .16, .19, .24, .28, .29, .31, and .33) were observed, especially CYP3A4.5 and CYP3A4.16, and this may be related to the metabolic site-heme iron atom distance. In the present study, we functionally analyzed the effects of 25 CYP3A4 protein variants on itraconazole metabolism for the first time, and provided comprehensive data on itraconazole metabolism in vitro. This may help to better assess the metabolism and elimination of itraconazole in clinic to improve the safety and efficacy of its clinical treatment and also provide new possibilities for the treatment of COVID-19.


Assuntos
COVID-19 , Itraconazol , Humanos , Itraconazol/farmacologia , Itraconazol/química , Itraconazol/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Lopinavir , Darunavir , Tratamento Farmacológico da COVID-19 , Cromatografia Líquida , Espectrometria de Massas em Tandem , Interações Medicamentosas , Variação Genética
8.
Toxicol Appl Pharmacol ; 475: 116653, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37574146

RESUMO

AIM: Ibuprofen is the most commonly used analgesic. CYP polymorphisms are mainly responsible for the differences in drug metabolism among individuals. Variations in the ability of populations to metabolize ibuprofen can lead to drug exposure events. The aim of this study was to evaluate the effects of CYP2C19 and CYP3A4 polymorphisms on ibuprofen metabolism in a Chinese population. METHODS: First, 31 CYP2C19 and 12 CYP3A4 microsomal enzymes were identified using an insect expression system. Then, variants were evaluated using a mature incubation system. Moreover, ibuprofen metabolite content was determined via ultra-performance liquid chromatography-tandem mass spectrometry analysis. Finally, kinetic parameters of CYP2C19 and CYP3A4 genotypes were determined via Michaelis-Menten curve fitting. RESULTS: Most variants exhibited significantly altered intrinsic clearance compared to the wild type. In the CYP2C19 metabolic pathway, seven variants exhibited no significant alterations in intrinsic clearance (CLint), six variants exhibited significantly high CLint (121-291%), and the remaining 15 variants exhibited substantially reduced CLint (1-71%). In the CYP3A4 metabolic pathway, CYP3A4*30 was not detected in the metabolite content due to the absence of activity, and 10 variants exhibited significantly reduced CLint. CONCLUSION: To the best of our knowledge, this is the first study to assess the kinetic characteristics of 31 CYP2C19 and 12 CYP3A4 genotypes on ibuprofen metabolism. However, further studies are needed on poor metabolizers as they are more susceptible to drug exposure. Our findings suggest that the kinetic characteristics in combination with artificial intelligence to predict the toxicity of ibuprofen and reduce any adverse drug reactions.


Assuntos
Citocromo P-450 CYP3A , Ibuprofeno , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP2C19/genética , Inteligência Artificial , Polimorfismo Genético
9.
Food Chem Toxicol ; 178: 113926, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37406757

RESUMO

BACKGROUND AND OBJECTIVE: Ibuprofen, a common non-steroidal anti-inflammatory drug, is used clinically for pain relief and antipyretic treatment worldwide. However, regular or long-term use of ibuprofen may lead to a series of adverse reactions, including gastrointestinal bleeding, hypertension and kidney injury. Previous studies have shown that CYP2C9 gene polymorphism plays an important role in the elimination of various drugs, which leads to the variation in drug efficacy. This study aimed to evaluate the effect of 38 CYP2C9 genotypes on ibuprofen metabolism. METHODS: Thirty-eight recombinant human CYP2C9 microsomal enzymes were obtained using a frugiperda 21 insect expression system according to a previously described method. Assessment of the catalytic function of these variants was completed via a mature incubation system: 5 pmol CYP2C9*1 and 38 CYP2C9 variants recombinant human microsomes, 5 µL cytochrome B5, ibuprofen (5-1000 µM), and Tris-HCl buffer (pH 7.4). The ibuprofen metabolite contents were determined using HPLC analysis. HPLC analysis included a UV detector, Plus-C18 column, and mobile phase [50% acetonitrile and 50% water (containing 0.05% trifluoroacetic acid)]. The kinetic parameters of the CYP2C9 genotypes were obtained by Michaelis-Menten curve fitting. RESULTS: The intrinsic clearance (CLint) of eight variants was not significantly different from CYP2C9*1; four CYP2C9 variants (CYP2C9*38, *44, *53 and *59) showed significantly higher CLint (increase by 35%-230%) than that of the wild-type; the remaining twenty-six variants exhibited significantly reduced CLint (reduced by 30%-99%) compared to that of the wild-type. CONCLUSION: This is the first systematic evaluation of the catalytic characteristics of 38 CYP2C9 genotypes involved ibuprofen metabolism. Our results provide a corresponding supplement to studies on CYP2C9 gene polymorphisms and kinetic characteristics of different variants. We need to focus on poor metabolizers (PMs) with severely abnormal metabolic functions, because they are more susceptible to drug exposure.


Assuntos
Anti-Inflamatórios não Esteroides , Ibuprofeno , Humanos , Ibuprofeno/química , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/metabolismo , Anti-Inflamatórios não Esteroides/química , Polimorfismo Genético , Genótipo
11.
Front Pharmacol ; 14: 1186824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288113

RESUMO

Genetic polymorphism of the cytochrome P450 (CYP) gene can significantly influence the metabolism of endogenous and xenobiotic compounds. However, few studies have focused on the polymorphism of CYP2J2 and its impact on drug catalytic activity, especially in the Chinese Han population. In this study, we sequenced the promoter and exon regions of CYP2J2 in 1,163 unrelated healthy Chinese Han individuals using the multiplex PCR amplicon sequencing method. Then, the catalytic activities of the detected CYP2J2 variants were evaluated after recombinant expression in S. cerevisiae microsomes. As a result, CYP2J2*7, CYP2J2*8, 13 variations in the promoter region and 15 CYP2J2 nonsynonymous variants were detected, of which V15A, G24R, V68A, L166F and A391T were novel missense variations. Immunoblotting results showed that 11 of 15 CYP2J2 variants exhibited lower protein expression than wild-type CYP2J2.1. In vitro functional analysis results revealed that the amino acid changes of 14 variants could significantly influence the drug metabolic activity of CYP2J2 toward ebastine or terfenadine. Specifically, 4 variants with relatively higher allele frequencies, CYP2J2.8, 173_173del, K267fs and R446W, exhibited extremely low protein expression and defective catalytic activities for both substrates. Our results indicated that a high genetic polymorphism of CYP2J2 could be detected in the Chinese Han population, and most genetic variations in CYP2J2 could influence the expression and catalytic activity of CYP2J2. Our data significantly enrich the knowledge of genetic polymorphisms in CYP2J2 and provide new theoretical information for corresponding individualized medication in Chinese and other Asian populations.

12.
Arch Toxicol ; 97(8): 2133-2142, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37209178

RESUMO

In this study, the effects of 17 CYP3A4 variants and drug-drug interactions (DDI) with its mechanism on alectinib metabolism were investigated. In vitro incubation systems of rat liver microsomes (RLM), human liver microsomes (HLM) and recombinant human CYP3A4 variants were established. The formers were used to screen potential drugs that inhibited alectinib metabolism and study the underlying mechanism, and the latter was used to determine the dynamic characteristics of CYP3A4 variants. Alectinib and its main metabolite M4 were quantitatively determined by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The results showed that compared with CYP3A4.1, only CYP3A4.29 showed higher catalytic activity, while the catalytic activity of CYP3A4.4, .7, .8, .12, .14, .16, .17, .18, .19, .20, .23, and .24 decreased significantly. Among them, the catalytic activity of CYP3A4.20 is the lowest, only 2.63% of that of CYP3A4.1. Based on the RLM incubation system in vitro, 81 drugs that may be combined with alectinib were screened, among which 18 drugs had an inhibition rate higher than 80%. In addition, nicardipine had an inhibition rate of 95.09% with a half-maximum inhibitory concentration (IC50) value of 3.54 ± 0.96 µM in RLM and 1.52 ± 0.038 µM in HLM, respectively. There was a mixture of non-competitive and anti-competitive inhibition of alectinib metabolism in both RLM and HLM. In vivo experiments of Sprague-Dawley (SD) rats, compared with the control group (30 mg/kg alectinib alone), the AUC(0-t), AUC(0-∞), Tmax and Cmax of alectinib administered in combination with 6 mg/kg nicardipine were significantly increased in the experimental group. In conclusion, the metabolism of alectinib was affected by polymorphisms of the CYP3A4 gene and nicardipine. This study provides reference data for clinical individualized administration of alectinib in the future.


Assuntos
Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450 , Ratos , Humanos , Animais , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Cromatografia Líquida , Ratos Sprague-Dawley , Nicardipino/metabolismo , Nicardipino/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem , Interações Medicamentosas , Microssomos Hepáticos/metabolismo
13.
Front Endocrinol (Lausanne) ; 14: 1110337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875463

RESUMO

Background: Diabetes mellitus (DM), a metabolic disease that has attracted significant research and clinical attention over the years, can affect the eye structure and induce cataract in patients diagnosed with DM. Recent studies have indicated the relationship between glycoprotein non-metastatic melanoma protein B (GPNMB) and DM and DM-related renal dysfunction. However, the role of circulating GPNMB in DM-associated cataract is still unknown. In this study, we explored the potential of serum GPNMB as a biomarker for DM and DM-associated cataract. Methods: A total of 406 subjects were enrolled, including 60 and 346 subjects with and without DM, respectively. The presence of cataract was evaluated and serum GPNMB levels were measured using a commercial enzyme-linked immunosorbent assay kit. Results: Serum GPNMB levels were higher in diabetic individuals and subjects with cataract than in those without DM or cataract. Subjects in the highest GPNMB tertile group were more likely to have metabolic disorder, cataract, and DM. Analysis performed in subjects with DM elucidated the correlation between serum GPNMB levels and cataract. Receiver operating characteristic (ROC) curve analysis also indicated that GPNMB could be used to diagnose DM and cataract. Multivariable logistic regression analysis illustrated that GPNMB levels were independently associated with DM and cataract. DM was also found to be an independent risk factor for cataract. Further surveys revealed the combination of serum GPNMB levels and presence of DM was associated with a more precise identification of cataract than either factor alone. Conclusions: Increased circulating GPNMB levels are associated with DM and cataract and can be used as a biomarker of DM-associated cataract.


Assuntos
Catarata , Diabetes Mellitus , Glicoproteínas de Membrana , Humanos , Biomarcadores , Catarata/etiologia , Estudos Transversais , Glicoproteínas de Membrana/sangue
14.
Pharm Biol ; 61(1): 356-361, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36728978

RESUMO

CONTEXT: Poziotinib and vonoprazan are two drugs mainly metabolized by CYP3A4. However, the drug-drug interaction between them is unknown. OBJECTIVE: To study the interaction mechanism and pharmacokinetics of poziotinib on vonoprazan. MATERIALS AND METHODS: In vitro experiments were performed with rat liver microsomes (RLMs) and the contents of vonoprazan and its metabolite were then determined with UPLC-MS/MS after incubation of RLMs with vonoprazan and gradient concentrations of poziotinib. For the in vivo experiment, rats in the poziotinib treated group were given 5 mg/kg poziotinib by gavage once daily for 7 days, and the control group was only given 0.5% CMC-Na. On Day 8, tail venous blood was collected at different time points after the gavage administration of 10 mg/kg vonoprazan, and used for the quantification of vonoprazan and its metabolite. DAS and SPSS software were used for the pharmacokinetic and statistical analyses. RESULTS: In vitro experimental data indicated that poziotinib inhibited the metabolism of vonoprazan (IC50 = 10.6 µM) in a mixed model of noncompetitive and uncompetitive inhibition. The inhibitory constant Ki was 0.574 µM and the binding constant αKi was 2.77 µM. In vivo experiments revealed that the AUC(0-T) (15.05 vs. 90.95 µg/mL·h) and AUC(0-∞) (15.05 vs. 91.99 µg/mL·h) of vonoprazan increased significantly with poziotinib pretreatment. The MRT(0-∞) of vonoprazan increased from 2.29 to 5.51 h, while the CLz/F value decreased from 162.67 to 25.84 L/kg·h after pretreatment with poziotinib. CONCLUSIONS: Poziotinib could significantly inhibit the metabolism of vonoprazan and more care may be taken when co-administered in the clinic.


Assuntos
Microssomos Hepáticos , Espectrometria de Massas em Tandem , Ratos , Animais , Cromatografia Líquida , Interações Medicamentosas , Microssomos Hepáticos/metabolismo
15.
Free Radic Biol Med ; 196: 53-64, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36640852

RESUMO

Oxidative stress can attack precursor nucleotides, resulting in nucleic acid damage in cells. It remains unclear how 8-oxo-dGTP and 8-oxoGTP, oxidized forms of dGTP and GTP, respectively, could affect DNA or RNA oxidation levels and tumor development. To address this, we intravenously administered 8-oxo-dGTP and 8-oxoGTP to wild-type and MTH1-knockout mice. 8-oxoGTP administration increased frequency of tumor incidence, which is more prominent in MTH1-knockout mice. However, 8-oxo-dGTP treatment rather reduced tumor development regardless of the mouse genotype. The tumor suppressive effects of 8-oxo-dGTP were further confirmed using xenograft and C57/6J-ApcMin/Nju mouse models. Mechanistically, 8-oxo-dGTP increased the 8-oxo-dG contents in DNA and DNA strand breakage, induced cell cycle arrest in S phase and apoptosis mediated by AIF, eventually leading to reduced tumor incidence. These results suggest distinct roles of 8-oxo-dGTP and 8-oxoGTP in tumor development.


Assuntos
Neoplasias , Monoéster Fosfórico Hidrolases , Humanos , Animais , Camundongos , Monoéster Fosfórico Hidrolases/genética , Fase S , Nucleotídeos de Desoxiguanina/metabolismo , Neoplasias/genética , DNA/metabolismo , Camundongos Knockout , Apoptose , Enzimas Reparadoras do DNA/genética
16.
Front Pharmacol ; 13: 1007268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582532

RESUMO

Cytochrome 2C9 (CYP2C9), one of the most important drug metabolic enzymes in the human hepatic P450 superfamily, is required for the metabolism of 15% of clinical drugs. Similar to other CYP2C family members, CYP2C9 gene has a high genetic polymorphism which can cause significant racial and inter-individual differences in drug metabolic activity. To better understand the genetic distribution pattern of CYP2C9 in the Chinese Han population, 931 individuals were recruited and used for the genotyping in this study. As a result, seven synonymous and 14 non-synonymous variations were identified, of which 4 missense variants were designated as new alleles CYP2C9*72, *73, *74 and *75, resulting in the amino acid substitutions of A149V, R150C, Q214H and N418T, respectively. When expressed in insect cell microsomes, all four variants exhibited comparable protein expression levels to that of the wild-type CYP2C9 enzyme. However, drug metabolic activity analysis revealed that these variants exhibited significantly decreased catalytic activities toward three CYP2C9 specific probe drugs, as compared with that of the wild-type enzyme. These data indicate that the amino acid substitution in newly designated variants can cause reduced function of the enzyme and its clinical significance still needs further investigation in the future.

17.
Ageing Res Rev ; 82: 101763, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36272696

RESUMO

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a novel evolutionarily conserved protein present in both vertebrate and invertebrate species. MANF shows distinct structural and functional properties than the traditional neurotrophic factors (NTF). MANF is composed of an N-terminal saposin-like lipid-binding domain and a C-terminal SAF-A/B, Acinus and PIAS (SAP) domain connected by a short linker. The two well-described activities of MANF include (1) role as a neurotrophic factor that plays direct neuroprotective effects in the nervous system and (2) cell protective effects in the animal models of non-neuronal diseases, including retinal damage, diabetes mellitus, liver injury, myocardial infarction, nephrotic syndrome, etc. The main objective of the current review is to provide up-to-date insights regarding the structure of MANF, mechanisms regulating its expression and secretion, physiological functions in various tissues and organs, protective effects during aging, and potential clinical applications. Together, this review highlights the importance of MANF in reversing age-related dysfunction and geroprotection.


Assuntos
Astrócitos , Fármacos Neuroprotetores , Animais , Humanos , Astrócitos/metabolismo , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse do Retículo Endoplasmático
18.
Iran J Basic Med Sci ; 25(5): 659-663, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35911647

RESUMO

Objectives: This study aims to evaluate the catalytic activities of 31 CYP2C19 alleles and their effects on the metabolism of tapentadol in vitro. Materials and Methods: Insect microsomes expressing the CYP2C19 alleles were incubated with 50-1250 µM tapentadol for 40 min at 37 °C and terminated by cooling to -80 °C, immediately. Tapentadol and N-desmethyl tapentadol were analyzed by a UPLC-MS/MS system. The kinetic parameters Km, Vmax, and intrinsic clearance (Vmax/Km) of N-desmethyl tapentadol were determined. Results: As a result, the intrinsic clearance (Vmax/Km) values of most variants were significantly altered, while CYP2C19.3 and 35FS had no detectable enzyme activity. Only one variant, N277K, showed no significant difference from CYP2C19.1B. Two variants CYP2C19.29 and L16F displayed markedly increased intrinsic clearance values of 302.22% and 199.97%, respectively; whereas 24 variants exhibited significantly decreased relative clearance ranging from 0.32% to 79.15% of CYP2C19.1B. Especially, CYP2C19.2G, 2H, R124Q, and R261W exhibited a drastic decrease in clearance (>80%) compared with wild-type CYP2C19.1B. Conclusion: As the first study of all aforementioned alleles for tapentadol metabolism, the comprehensive data in vitro may provide novel insights into the allele-specific and substrate-specific activity of CYP2C19.

19.
Free Radic Res ; 56(5-6): 358-365, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35880390

RESUMO

Osteoporosis is a worldwide disease that seriously affects the quality of life and survival rate of the elderly. The detection of bone biomarkers will provide supplementary information on bone mineral density, contributing to the accurate diagnosis of osteoporosis and better health care for prevention. This study aimed to investigate the efficacy of oxidative stress markers-8-oxo-7,8-dihydroguanine (8-oxoGsn) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGsn) in the assessment of osteoporosis. We conducted a cross-sectional study among menopausal women with a mean (standard deviation) age of 62.967 (7.798) years old (n = 151). Participants were recruited for the bone mineral density (BMD) assessment, blood and urinary samples. Urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydro-guanine concentrations were measured by ultra-performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS). The urinary 8-oxoGsn/Cre value differed significantly between normal and osteoporotic participants (p < 0.001), while the 8-oxodGsn/Cre value did not (p = 0.720). Even after adjusting for the age and body mass index, the BMD was still associated with urinary 8-oxoGsn/Cre value. ROC analysis showed that 8-oxoGsn has a strong diagnostic value for osteoporosis (AUC = 0.744). The results show for the first time that 8-oxoGsn may be a biomarker for the future diagnosis of osteoporosis in women.


Assuntos
Desoxiguanosina , Osteoporose , Humanos , Feminino , Idoso , Pessoa de Meia-Idade , 8-Hidroxi-2'-Desoxiguanosina , Cromatografia Líquida/métodos , Desoxiguanosina/urina , Espectrometria de Massas em Tandem/métodos , Estudos Transversais , Qualidade de Vida , Biomarcadores/urina , Osteoporose/diagnóstico
20.
Free Radic Biol Med ; 188: 447-458, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35809767

RESUMO

MTH1 protein can sanitize the damaged (d)NTP pool and MTH1 inhibitors have been developed to impede the growth of rapidly proliferating tumor cells; however, the effect of MTH1 inhibition on breast cancer stemness has not been reported yet. Here, we constructed breast cancer cell lines with the stable depletion of MTH1. MTH1 suppression clearly increased the ratio of CD44+CD24-/low subpopulations and promoted the formation of tumorspheres in MCF7 and T47D cells. RNA expression profiling, RT-qPCR and Western blotting showed the upregulation of master stem cell transcription factors Sox2, Oct4 and Nanog in MTH1 knockdown cells. GSEA suggested and Western blotting verified that MTH1 knockdown increased the expression of phosphorylated STAT3 (Tyr705). Furthermore, we indirectly demonstrated that the increased concentration of 8-oxo-dGTP and 8-oxo-GTP in MTH1-knockdown cells and exogenous 8-oxoGTP, rather than 8-oxo-dGTP, could significantly increase the phosphorylation of STAT3. In conclusion, this work indicates that MTH1 inhibition increased the proportion of breast cancer stem cells (BCSCs) and promoted stemness properties in MCF7 cells.


Assuntos
Neoplasias da Mama , Fator de Transcrição STAT3 , Neoplasias da Mama/patologia , Enzimas Reparadoras do DNA , Feminino , Humanos , Células MCF-7 , Células-Tronco Neoplásicas/metabolismo , Monoéster Fosfórico Hidrolases , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Ativação Transcricional , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...